HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) IV B.TECH I SEMESTER END REGULAR EXAMINATIONS, NOV-2022 FINITE ELEMENT METHODS (Common to AME & ME Branch)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) PART-A Answer all the questions in Part-A (5X2=10M)

1	a) L	List different weighted residual methods	[2M]
	b) V	Write strain displacement relations for 2 D problems	[2M]
	c) V	Write the shape functions for two noded beam element	[2M]
	d) [Draw four noded quadrilateral element	[2M]
	e) V	Write the mass matrix for two noded bar vibration element	[2M]
		PART-B	
		Answer One Question from each UNIT (5X10=50M)	
		UNIT-I	
2	Exp	lain Rayleigh Ritz method with an example	[10M]
		(OR)	

	$(\circ 1)$	
3	Derive the stress strain relations for plane stress problem	[10M]
	UNIT-II	
4	a. What are the advantages and disadvantages of finite element method	[5M]
	b. What is meant by geometric invariance? How do you achieve geometric invariance	[5M]
	(OR)	
5	a. How do you fund best node numbering scheme	[5M]
	b. Explain about convergence requirements	[5M]

Analyse the beam shown in Fig. by finite element method and determine the slope of [10M] 6 deflection curve at the supports. given $E = 2 \times 10^5$ N/mm² and $I = 5 \times 10^6$ mm⁴

(OR)

R18

- 7 For the plane truss shown in Figure ,
 - (i) determine the displacement components at nodes.
 - (ii) determine the stresses in each bar, and
 - (iii) verify the nodal equilibrium at node I.

UNIT-IV

8 A rectangular element is shown in figure. Evaluate Jacobian matrix at $\xi = 0$, $\eta = 0$ and [10M] determine the strain displacement matrix

9 Derive the Gaussian points and corresponding weights for two point Gaussian quadrature [10M] approach

UNIT-V

10 Determine the natural frequencies of the stepped simply supported beam as shown in [10M] figure

(OR)

A fin of length 12cm has its base (left end) temperature at 120°C. Its [10M] cross section is a rectangleof width 3cm and thickness 1cm. The conductivity of the fin material is 50 W/m-°K. The convective heat transfer coefficient is 120 W/m2-°K and surrounding temperature is 20°C. Determine the temperature distribution along the length of the fin. Considering two cases of without including convection and including

* * * * * *

