PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE
(AUTONOMOUS)
IV B.TECH I SEMESTER END REGULAR EXAMINATIONS, NOV-2022
FINITE ELEMENT METHODS
(Common to AME \& ME Branch)
Time: 3 hours
Max. Marks: 60

> Note: Question Paper consists of Two parts (Part-A and Part-B)
> $\underline{\text { PART-A }}$
> Answer all the questions in Part-A $(\mathbf{5 X 2}=\mathbf{1 0 M})$

1 a) List different weighted residual methods
b) Write strain displacement relations for 2 D problems
c) Write the shape functions for two noded beam element
d) Draw four noded quadrilateral element
e) Write the mass matrix for two noded bar vibration element

PART-B
Answer One Question from each UNIT (5X10=50M)
UNIT-I
2 Explain Rayleigh Ritz method with an example
(OR)
3 Derive the stress strain relations for plane stress problem
UNIT-II
4 a. What are the advantages and disadvantages of finite element method
b. What is meant by geometric invariance? How do you achieve geometric invariance
(OR)
5 a. How do you fund best node numbering scheme
b. Explain about convergence requirements

UNIT-III
6 Analyse the beam shown in Fig. by finite element method and determine the slope of [10M] deflection curve at the supports. given $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $I=5 \times 10^{6} \mathrm{~mm}^{4}$

(OR)

7 For the plane truss shown in Figure ,
(i) determine the displacement components at nodes.
(ii) determine the stresses in each bar, and
(iii) verify the nodal equilibrium at node I.

UNIT-IV

8 A rectangular element is shown in figure. Evaluate Jacobian matrix at $\xi=0, \eta=0$ and determine the strain displacement matrix

9 Derive the Gaussian points and corresponding weights for two point Gaussian quadrature approach

UNIT-V

10 Determine the natural frequencies of the stepped simply supported beam as shown in [10M] figure

(OR)
11 A fin of length 12 cm has its base (left end) temperature at 120 。C. Its cross section is a rectangleof width 3 cm and thickness 1 cm . The conductivity of the fin material is $50 \mathrm{~W} / \mathrm{m}-\mathrm{oK}$. Theconvective heat transfer coefficient is $120 \mathrm{~W} / \mathrm{m}_{2}-\mathrm{K}$ and surrounding temperature is 20。C.Determine the temperature distribution along the length of the fin. Considering two cases ofwithout including convection and including

